Welding Residual Stress Analysis and Fatigue Strength Assessment of Multi-Pass Dissimilar Material Welded Joint between Alloy 617 and 12Cr Steel

نویسندگان

  • Hafiz Waqar Ahmad
  • Jeong Ho Hwang
  • Ju Hwa Lee
  • Dong Ho Bae
چکیده

The reliability of welded structure can be evaluated through welding residual stress analysis and fatigue strength assessment. In this study, welding residual stresses of multi-pass dissimilar material welded joint between alloy 617 and 12Cr steel were analyzed numerically and experimentally. Fatigue strength was then assessed in the air. Based on results of welding residual stress analysis and fatigue strength assessment, a fatigue design method considering welding residual stress was investigated. Welding residual stresses at the weld of dissimilar welded joints distributed complicatedly on longitudinal and transverse directions, showing differences but a very similar distribution tendency between numerical and experimental results. Numerical and experimental peak values of welding residual stresses at HAZ of the weld on the 12Cr steel side were predicted to be 333 MPa and 282 MPa HAZ, respectively. The fatigue limit of dissimilar material welded joint between alloy 617 and 12Cr steel was assessed to be 306.8 MPa, which was 40% of tensile strength (767 MPa) of dissimilar material welded joint. However, the stress range including welding residual stress was assessed to be 206.9 MPa, which was 14% lower than that calculated by including the effect of residual stresses.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

An Assessment of the Mechanical Properties and Microstructural Analysis of Dissimilar Material Welded Joint between Alloy 617 and 12Cr Steel

The most effective method to reduce CO2 gas emission from the steam power plant is to improve its performance by elevating the steam temperature to more than 700 ◦C. For this, it is necessary to develop applicable materials at high temperatures. Ni-based Alloy 617 and 12Cr steel are used in steam power plants, due to their remarkable mechanical properties, high corrosion resistance, and creep s...

متن کامل

Corrosion behavior of dissimilar welded joint between Inconel 617 alloy and A387-Gr.11 low-alloy steel

In this study, Inconel 617 alloy was welded to A387-Gr.11 low-alloy steel using ER309L filler metal via gas tungsten arc welding (GTAW). First, the corrosion behavior of Inconel 617, A387-Gr, and the weld metal was evaluated by the Tafel polarization test and electrochemical impedance spectroscopy (EIS) in acidic (H2SO4), neutral (NaCl), and combined (H2SO4 + NaCl) solution at ambient temperatu...

متن کامل

Corrosion behavior of dissimilar welded joint between Inconel 617 alloy and A387-Gr.11 low-alloy steel

In this study, Inconel 617 alloy was welded to A387-Gr.11 low-alloy steel using ER309L filler metal via gas tungsten arc welding (GTAW). First, the corrosion behavior of Inconel 617, A387-Gr, and the weld metal was evaluated by the Tafel polarization test and electrochemical impedance spectroscopy (EIS) in acidic (H2SO4), neutral (NaCl), and combined (H2SO4 + NaCl) solution at ambient temperatu...

متن کامل

The effect of electron beam welding parameters on the microstructural characteristics and mechanical properties of dissimilar joint between 17-4PH steel and Ti6Al4V alloy

This study aimed to investigate the effect of electron beam welding parameters on the microstructural characteristics and mechanical properties of the dissimilar joint between 17-4PH precipitation hardening stainless steel and Ti6Al4V alloy. For this purpose, the welding of these two alloys was done without an interlayer and with an interlayer of copper with a thickness of 0.8 mm. Two different...

متن کامل

Microstructure and Mechanical Properties of the Friction Welded Joint between X53CrMnNiN219 and X45CrSi93 Stainless Steel

Dissimilar metals friction welding of austenitic–martensitic stainless steels is commonly used in order to manufacture engine valves in the automobile industry. In this study, X53CrMnNiN219 (austenitic stainless steel) and X45CrSi93 (martensitic stainless steel) valve steel rods were welded by friction welding process. The welded joint was then heat treated at 760 0C for 60 min. Mechanical prop...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2017